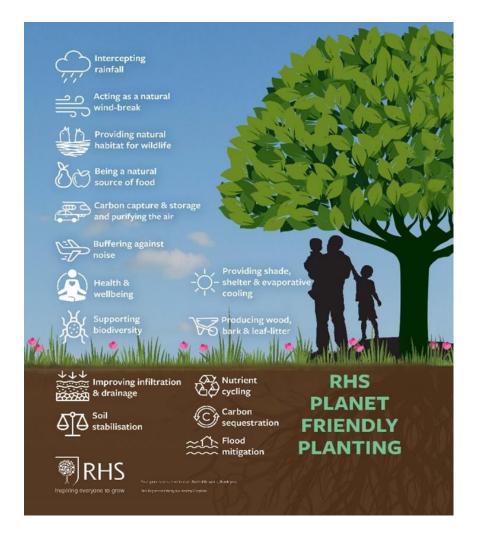
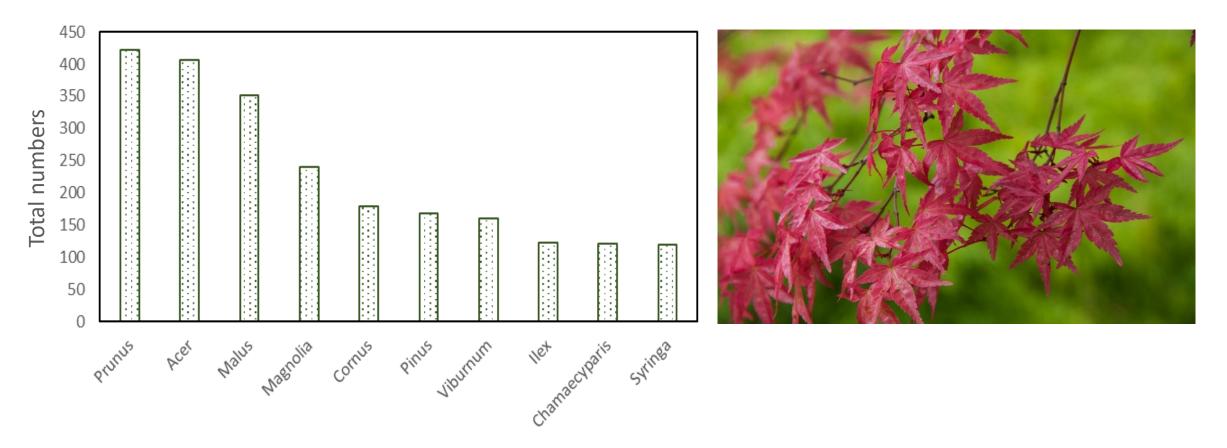


Optimising tree selection for future ecosystem services


Dr Elisabeth Larsen

What ecosystem services do we want?

- Cooling
- Flood mitigation
- Carbon sequestration /storing
- Support for wildlife (food, habitat)
- Pollution mitigation
- Noise reduction
- Wellbeing
- Aesthetically pleasing



Trees in gardens

- Domestic gardens make up 30% of urban space in the UK
- Trees within gardens play a key role
- Services vary between species
- Motivation and management differ in private garden to public landscapes
- Regulating services often relate to tree size 'The bigger the better'
- Species-specific information needed for gardeners, trees appropriate for smaller gardens

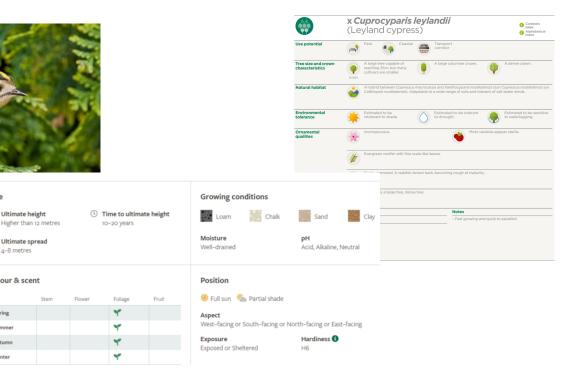
What trees do people plant in their gardens?

Trees with a great colour display/ smaller in size/ magnitude of cultivars

Conflict of service delivery

Leyland cypress (x Cuprocyparis leylandii)

Dense crown Shade, high LAI Fast growing, offset of co₂


Ultimate height

Ultimate spread

4-8 metres

Colour & scent

Favoured hunting spot for birds such as goldcrest

Tolerant to drought, intolerant to shade

Can get too big and too dense in a garden context

Also divided opinion on the aesthetics

RHS ongoing research

- Ecosystem services trial measurements of 20 cultivars, main focus on regulating services: cooling, rainfall mitigation and carbon
- Surveys Sustainability survey Dr Chloe Sutcliffe
- MSc how does leaf colour impact cooling potential?
- RHS my garden; what trees do people have in their garden
- Hedges and ecosystem services Dr Tijana Blanusa

Trees cut down in domestic gardens

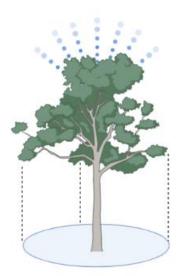
- Survey by Dr Chloe Sutcliffe (RHS)

21.5% had cut down trees during the last three years23.3% had planted new trees in the last three years

Most common reason why trees were cut down:

- 1. Too large for the space available (38.1%)
- 2. Trees too close to a building (20.3%)
- 3. Trees were creating too much shade (16.3%)
- 4. Trees had died due to extreme weather (13.9%)
- 5. Make way for new construction (13.3%)
- 6. Tree causing subsidence (7.8%)
- 7. Trees were causing allergies (2.4%)

Traits connected to ecosystem services' delivery


Wide, tall and multi- stratified with large- leaved evergreen species	higher rainfall and pollution capture efficiency/ noise mitigation	Blanusa et al., 2019; Becketet al., 2000; Freer- Smith et al. 2004; Rasanen et al. 2013;
Rough leaf surfaces/hairy leaves/lanceolate- shaped/larger leaves	Absorbance of PM/ heavy metals	Blanusa et al. 2019 Leonard et al. 2016
High leaf density, wide canopy	Cooling through shading	Vaz Monteiro, et al. 2019
Lighter leaf colour	Increased reflection of solar radiation	Vaz Monteiro, et al. 2019;

Cooling capacity of trees

Urban vegetation can reduce air temperature between 0.5- 8°C
Tree-shade can reduce surface temperature by 12-20 °C

Urban heterogeneity, micro-meteorological factors and Species selection alter cooling effectiveness

The higher the transpiration \rightarrow the more cooling effect through transpiration The denser the crown \rightarrow more cooling through shading

(Rahman et al. 2019;2015; Vaz Monteiro et al.,2029; Smithers et al. 2018; Vico et al. 2014)

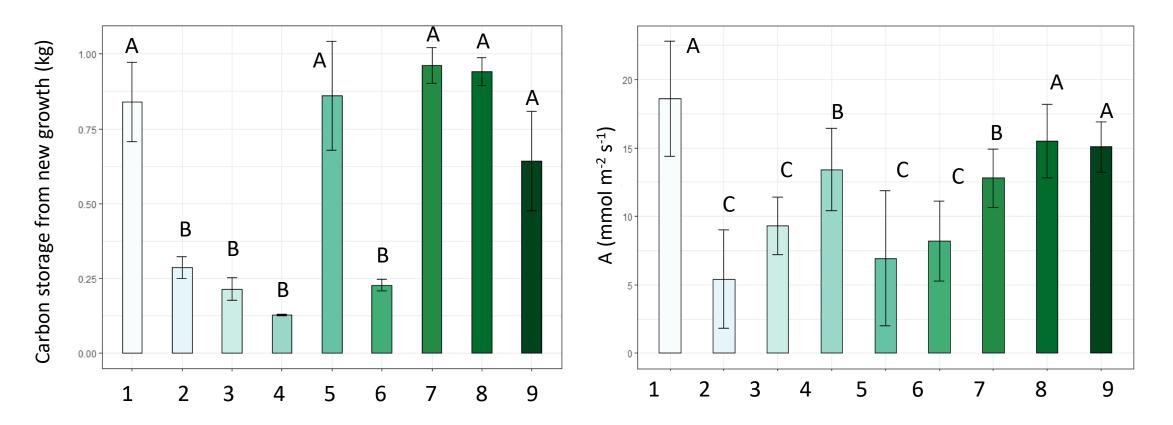
Ecosystem services and garden trees

Continuous measurements

- Sap flow (three replicates)
- Growing media moisture
- Meteorological parameters

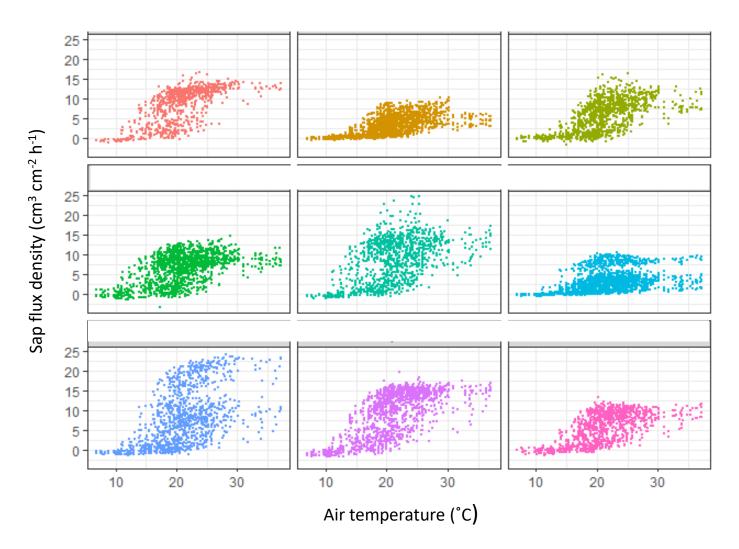
Point measurements

- Biomass (wood)
- Leaf area
- Crown dimensions
- Gas exchange


Experimental design

- Nine species six replicates
- Planted in February 2021
- Four/five-year old trees

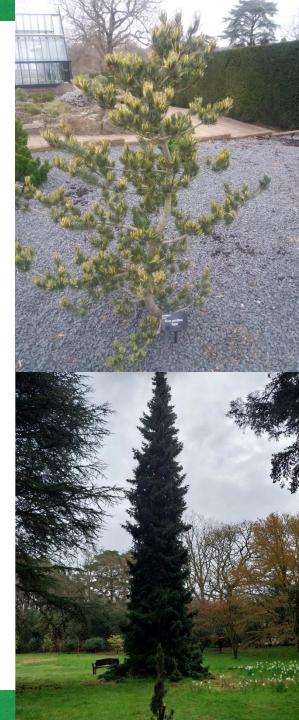
- Randomised block design
- 2-4 meters tall
- 130 L size containers



Carbon storage and CO₂ sequestration

Carbon storage between 0.1 - 0.8 kg for one growing season Carbon sequestration 5 – 18 mmol m⁻² s⁻¹

Air temperature and transpiration July 2022


Trees irrigated were still transpiring with air temperature of 37.1°C

However, differed in when transpiration increased and plateaued in relation to air temperature

No observed decrease in transpiration at highest temperature

Summary

- Gardens, both private and public has the potential to contribute to increased canopy cover, biodiversity and ecosystem services
- Trees are being cut down due to inappropriate species selection
- Research is needed to fuel the advice gardeners are given
- Specifically, what trees are going to be appropriate for smaller spaces while also growing in a warmer climate
- A range in carbon storage, transpiration and crown size was found in nine tree cultivars measured

Thank you for listening

Thanks to Dr Mark Gush Dr Tijana Blanusa Nick Dunn

Rachael Tanner Joe Barker Paul Mealey Rebekah Mealey Jim Arbury

For contact: elisabethlarsen@rhs.org.uk

